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Lecture f : Applications of DFT

Glassical density functional the orgy recap.
fi : grand-comonical phase-space.F[P] = (kn +E +RTInful) probability density-

Fip] is a unique functional of the equilibrium density p().
Variational principle : 2v[] = Ft]-Sdulr]ptr).

& some density profile .

=0
jg

=> M
= Vext()+ Constancy of chemical potential) -

Two hierarchies of correlation functions
Direct correlation functions : ('4(r ....-+

Density-density correlationfunctions :
G"(ris -,t=til

with : 64 (i, ..., m ) = Sprin
=

(Op() ... Spin)] 122 .
Two generating functionals :
Eg] and In] related by Legendre transform = Of equation.



⑫

Integrationwrt particle density.

Define parameter poli) = pluja = [Pretil,0
Fex[p]
uniqueIdea : Fentp) = Fex[Pref] + /doe

can be shown it ↑funct↓ is path interpendent
in single-phase region .=Fex[if] + /do Jdetsouse :

- p(ric) = pref(t)
- " ([p]ji) +og()-Pref(r)] .

=> BFen[p] = PFextpref]-(dofarcKIp]ir) [pl-Pref(u)] .

Do this procedure twice:) convince yourself !)
BFex[p] = &Fex[Pref]-fdrc"([Pref]ir) [p(ifprefIr)]

-(0do(ar [p() -pref()](01fdr((P: ) [p() -Prefi)]
(a)

Still need prescription forcl .
For Vext() = 0 ; & constant and Baking Pref() =0

al(p) = J9dp'fd= g()(pjm ,
i)

G= Bp((+ = 1-(d=c (p,)
Furthermore : Bu(p) = Brid-c"(p) Compressibility sum ruleI
(A) can le starting point for approximations .
Choose Preflr) = &b . ; c([P]iFi) = c) (Pb ; -D).



⑬
Then we find :
&r[pS = BRtpp) +JarBVext(r)((r) + (d= [p() p(i) +Pb]
- -for (d=()((Pbj(r- (1)[p(i) -Pb)[p(r) -Pb] .

Above relation can also be obtained from functional Taylor expansion
offrtp) around Pb.

DFT also useful to derive approximate closure relations
CPercus test particle , see LN).

Gas-liquid interface Recall from previous lecture :

Bf(p) = plog()-Bap" Different from Is we have a "vdw love
Diffrent prescription for cut offgive

& ant dependent a, b . Throddyn,

Thermodynamic instability8ia ; limit ofstabilita
-

Common target construction :(M equal
chemical

potential

↓ Mco=-fol equal pressure.

binodal

V fixed comonical :
Phase

diagram
Ng-egry : Netpeve

=
= Vg = V -Ve.

Ilver rule) .



⑭
Focus on liquid-gas interface. Consider a lvanishing) external potential
Vext(z) = mgz that localizes the interface near z=0. We let g -o

· te
So we

expecti
For I sufficiently below Tc , E is a few atomic

diameters-

~LDA will not work. We will perform a gradient expansion : p() =↑
wherero-0 . Gipli)

Ftp] =Jafo(pl)+file f
dijp( =)]

+... 9Ftp] is unique functional of pli) independent of Vext()
: Expansion= Rotational invariant (so no oddgradients)

Flp] =JarGfo(p(i) + fr (p(t)) tP(t) f (p()) IVp(1" +...O( : ")S

Hance
,
we find : Flp] : Jardfo(p()) + fa(p()) Ip(r>P+......
-

square-gradient approximation .

Evidently , for p(i) = Pb => folgb) Helmholtz freeenergy density
of uniform find with buth density Pb .

We can actually also get microscopic expression for fe(P)t
We find : Pfz (pb)= /divc(Pbir) . (Higher order coefficients

depend on c'us2)
How to get this ? =) Tutorial .=> VdW theory for the gas-liquid interface . (Seetutorials for details) .
general for now:

&r[p] = (d* [f(p() + fz(g())Ip(r)]- Saruhip(r) .

with u(r) = u(z) = M-mgE - P(r) = p(z)



⑤
-

Euler-Lagrange equation : M-m/z = f'(p(z)) - fi(p(z))(-2f(p)
g+0

Define : w(p(z)) = f(p(z)) -Mp(z) Grand podential density.

= wePJ at coexisteaare equal : Pe= Pg = Pco-

J2(p) .= constant (vdW model).

=> EL becomes by multiplying with and integrating
f(p(z))- (p(z)) - fz (d = coust = -peo -

= 82 ()" = w(p()) + Peor

or z= fa"Side' (wipopol popledPo ↓
(Note plz) monotonic inthis theory) . for example

je.P

We define surface tension as :

v
= Rex : surface excess

gibbsdividing

plant
grand potential per idealised profile.unit area

Ma
=> Straightforward to generalise to fulp) + constant:

↳When
you have c4(r ; p) : microscopic description of interface.

=> We find p(z)-pg -e-z/Eb (7+c)
↳ bulk correlation length -



Nearcritical point : J-(Tz-T) T-Tc · (mean-field critical

j
+ 0 (T-E) = interface disappears at critten aint

Reality : J-(Tc-T)t with exponent n = 28= 1 . 26.

Furthermore , beyond mean-field causes capillary waves ?

Typical length scale:↳rigeplane.

E
.g. Ar close to triple point In OCmm) ·

El : <]-Medium-inducedinteractions

Up until now we focused what happens when we integrate out
"internal degrees of freedom". However , what happens if we

integrate out "all" degrees of freedom of another component.
For example , colloidal particles in a solvent .

N interacting "interesting" particles

# Ns "minteresting" particles.
Ena

E.g. solvent
. PrMsG .

↑
semipermeable
membrane: only solvent particles can pass

Idea : treat interesting particles canonical , whereas uninteresting
particles grand-canonical

.

Thermodynamic potential
:& (N ,

V
,
T
,Ms)= F(N ,N ,

V
.T) -MSNs -

dR = - pdVtMdN-SAT-CNsTdMs .

Osmotic ensemble
-
-



⑰

-BrRMsNs NNsT S=)
ECN

,Ns ,VIT) =NSd]di *e-PEC ,N

s
&eff : effective interaction potential between "interesting"

particles-

Let's make decomposition:&
*)= (E) +E(E** ) +Essti)
X ↑ ↑

"bare" interactions particle- schenf-
Calso present in medium solvent

vacuum) interactions - interactions

This is generally true (no approximation).

=> e-Beef <RiMsT) = e-BEE)MMs SdiMsc-PEMs)- MESsCMa)

:= e-BEC)-BW(r" ;M ,MT)

Clearly : tremendous task to computeeff
W is thegrand potential of the inhomogeneous solvent in the external field
caused by the fixed configuration of particlesENG I



⑤
volutionstrategy :

N =0 : Pure solvent jone-component system :

=> W = - polus ,T)V . (pressure of solvent reservoir)

Nil : Pure solvent + one particle -

=> W = -
po (MST) Y + w , (Ms .T)

↑
excess grand potential of solventdue to presence of particle

co
,
includes entropic effects due to restructuringof solvent closeto particle surface , but also energetic effects with particle-

Note translational invariance => no dependence on Fit
N =2 : Two particles : 2 ,&S
-

=> W =
=po (Ms ,+) V + 2 vn(Ms ,T) + we (Ir -EliMsT]

I
solvent induced

pair interaction-
Note that w(r) to Cr-> a) by construction,
Arbitrary number of particles :

WCR ;Ms T) = -PolT)V + NW · Lus+ wa(RijiMs ,T)

+we (RijkMt.

We did not explicitly calculate anything ! Fast bookkeeping .
=> Eff(R) = E(EY) +W(R"iMsiT)
-Heff ( "iMsiT) .

==Po(Ms ,T(V + No , (at)+(" )+[ 1 v (Rijims
,T ....

-j



⑤
Hence

,
M (N

,Ms ,
V

,T) = -po (Ms.T)V +Nu (MT) + A CN
,
V
,
T ;Ms)

where : -Ph=N SaRe-BHeff(e" -Ms ,T)

Interpretation: A : Helmoltz free energy of the N "interesting" dressed

particles
>

=> Note that we did no approximationsI

Thermodynamics : p = -NitiMs
=>

p
= polus ,T) +#(p ,MsT) iT = - (imsit -

& osmotic pressure(pressure of dressed colloid system /
u = (TMS

= w , Ms ,T) +m,St)in=Mt
Often we are interested what happens as function of P
2) not interested in constant offsets po ,M .

Example , where three-bodyterms are neglected :

two changes:ar
Er = Er (us ,T)



⑩

Ethydrostatic pressea osmotic
pressure-

semi-permeable membrane.

>

·
is smaller for
polymers.

higher entropy
=> attraction

·
Sa Ve

Finally note that :

e-BWiMT)MSBE
--
inhomogeneous solvent in external field caused
by fixed configuration of particles1 DFTP


