Let
$$
u = \frac{1}{7}
$$
: Applications of DFT

\nClassical density functional theory we
\n $\mathcal{F}[\rho] = \langle K_N + \Phi_N + \Phi_S \mathsf{T} \mathsf{In} \mathsf{$

Interaction with particular with a
\n
$$
Drefine parameter $g_{\alpha}(\vec{r}) = \rho(\vec{r}; \alpha) = \begin{cases} \rho_{\alpha}(\vec{r}), \alpha = 0 \\ \rho(\vec{r}), \alpha = 1 \end{cases}$
$$

\n36a:
$$
F_{\alpha}[\rho_{\beta}] = F_{\alpha}[\rho_{\alpha}(\vec{r}) + \int_{d\alpha}^{d} \frac{\partial F_{\alpha}[\rho_{\alpha}]}{\partial \alpha} - \frac{\partial F_{\alpha}[\rho_{\alpha}]}{\partial \alpha} - \frac{\partial F_{\alpha}[\rho_{\alpha}]}{\partial \alpha} + \int_{d\alpha}^{d} \frac{\partial F_{\alpha}[\rho_{\alpha}]}{\partial \alpha} - \frac{\partial F_{\alpha}[\rho_{\alpha}]}{\partial \alpha} - \frac{\partial F_{\alpha}[\rho_{\alpha}]}{\partial \alpha} + \int_{d\alpha}^{d} \frac{\partial F_{\alpha}[\rho_{\alpha}]}{\partial \alpha} - \frac{\partial F_{\alpha}[\rho_{\alpha}]}{\partial \alpha} - \int_{d\alpha}^{d} \frac
$$

⑫

)

Then we find:
\n
$$
\Omega_v [q] = \beta \Omega [q_v] + \beta \gamma \int_{ext} [r] q(r) \rho(r) + \beta \int_{qt} [q(r)] \rho(r) \rho_0
$$

\n $- \frac{1}{2} \int_{td}dr \int_{td}dr' \rho_0(r) \rho_0(r) \rho_0(r) \rho_0 [q(r)] \rho_0 (r) \rho_0$
\n $- \frac{1}{2} \int_{td}dr \int_{td}dr' \rho_0(r) \rho_0(r) \rho_0 [q(r)] \rho_0 [q(r)] \rho_0$.
\n
\nHowever, relation can also be obtained from functional Taylor expansions
\n $\rho_0 r \Omega_v [q]$ around p_0 .
\nOrr also useful to drive approximate closure relations
\n $\beta(q) = \rho \log \frac{q(2\lambda^2)}{1 - \rho_0} - \beta \alpha \rho_0^2$ Different form. Its use have a "vdv [mg']
\n $\int_{td} f(q) = \rho \log \frac{q(2\lambda^2)}{1 - \rho_0} - \beta \alpha \rho_0^2$ Different form. Its use λ cut ρ_0 cut
\n $\int_{td} dr$ $\int_{td} d\lambda$ $\int_{td} d\lambda$

For
$$
l
$$
 signal-gas interface. Consider a (vanishing) external potential
\n l and l and l and l are the l and

Future-Lagrange equation:
$$
\mu \rightarrow \pi/2 = \int (g(z)) - \int z(g(z)) \frac{d}{dz} \frac{1}{z} - 2 \int x(g(z)) \frac{1}{4z} \frac{1}{z}
$$

\n3. Let $\mu \rightarrow 0$ and $\mu \rightarrow 0$

\n3. Let $\mu \rightarrow 0$ and $\mu \rightarrow 0$

\n4. Let $\mu \rightarrow 0$ and $\mu \rightarrow 0$

\n5. Let $\mu \rightarrow 0$ and $\mu \rightarrow 0$

\n6. Let $\mu \rightarrow 0$ and $\mu \rightarrow 0$

\n7. Let $\mu \rightarrow 0$ and $\mu \rightarrow 0$ and $\mu \rightarrow 0$

\n8. Let $\mu \rightarrow 0$ and $\mu \rightarrow 0$

\n9. Let $\mu \rightarrow 0$ and $\mu \rightarrow 0$

\n10. Let $\mu \rightarrow 0$ and $\mu \rightarrow 0$

\n11. Let $\mu \rightarrow 0$ and $\mu \rightarrow 0$

\n2. Let $\mu \rightarrow 0$ and $\mu \rightarrow 0$

\n3. Let $\mu \rightarrow 0$ and $\mu \rightarrow 0$

\n4. Let $\mu \rightarrow 0$ and $\mu \rightarrow 0$

\n5. Let $\mu \rightarrow 0$ and $\mu \rightarrow 0$

\n6. Let $\mu \rightarrow 0$ and $\mu \rightarrow 0$

\n7. Let $\mu \rightarrow 0$ and $\mu \rightarrow 0$

\n8. Let $\mu \rightarrow 0$ and $\mu \rightarrow 0$

\n9. Let $\mu \rightarrow 0$ and $\mu \rightarrow 0$

\n10. Let $\mu \rightarrow 0$ and $\mu \rightarrow 0$

\n11. Let $\mu \rightarrow 0$ and $\mu \rightarrow 0$

\n12. Let $\mu \rightarrow 0$ and $\mu \rightarrow 0$

\n2. Let $\mu \rightarrow 0$ and $\mu \$

Near critical point: $\gamma \sim (T_c - T)^{3/2}$ $T \rightarrow T_c$. (mean-field critical 6) ic
J exponent).
- o (T-JTc) = interface disappears at critical point. Reality: $\gamma \sim (T_c-T)^{\mu}$ with exponent $\tilde{\mu} = 2\nu = 1$. '
2b. $Fur+hermore, beyond mean-field causes capillary waves)$ Typical length scale: Son de la maight flucturations $l = \sqrt{\frac{\sigma}{mg(g_{l}-g_{\sigma})}}$ E. g. Ar close to triple point ℓ n $O(mm)$. E.g. Ar close to triple po
E.g. Ar close to triple po
<u>E</u>LL :
<u>Medium-induced interactions</u> : to triple point $ln O(mm)$.
 $\left\langle \frac{1}{h^2} \right\rangle \sim \frac{k_B T}{2T \gamma} ln \frac{L}{\zeta}$ Up until now we focused what happens when we integrate out Up until now we focused what happens when we indegrate
"internal degrees of freedom". However, what happens if we integrate out "all" degrees of freedom of another component. For example, colloidal particles in a solvent. $\frac{1}{2}$ interactions with the particles in a sintegrate out
ternal degrees of freedom". However, what happens if we
degrate out "all" degrees of freedom of another comparent.
example, colloidal particles in a solvent.
N interacting "interesting" particles
Ns "aninteresting" particles. 2RMS e.g. solvent $\{x^{M}s\}$. [↑] semipermeable membrane: only solvent particles canpass I dea: treat interesting particles comonical, whereas uninteresting particles grand-canonical. Thermodynamic potential: Ω (N, V, T, μ_s)= F (N, N_{S)} V, T) - μ_s N_S. $d\Omega$ = p dV t μ dN-SdT-LNgJd μ g. Osmotic ensemble $-$
 $-$
 $-$
 $-$
 $-$
 $-$

 $rac{ens}{s}$

$$
\epsilon^{\beta\Sigma_{z}}=\sum_{N_{z}=0}^{\infty}e^{\beta\mu_{s}N_{s}}\cdot\frac{1}{2}(N_{y}N_{s},N_{T})
$$
\n
$$
2(N_{y}N_{s},N_{T})=\frac{1}{N!N_{x}^{N}}\frac{1}{N_{x}!N_{y}^{N}}\int d\tilde{\kappa}^{M}\int d\tilde{\kappa}^{M
$$

⑤

Solution strategy :

^N ⁼ ⁰ : Pure solvent jone-component system: => W ⁼ polus , T)V. (pressure of solvent reservoir)

Nil : Pure solvent ⁺ one particle - => W ⁼ po (MST) ^Y ⁺ w, (Ms . T) ↑ excess grand potential of solvent due to presence of particle co , includes entropic effects due to restructuring of solvent close to particle surface , but also energetic effects with particle-Note translational invariance => no dependence on Fit ^N ⁼ ² : Two particles : 2 ,&S - => W ⁼ = po (Ms , +) V ⁺ ² vn(Ms , T) ⁺ we (Ir - EliMsT] I solventinduced pair interaction-Note that ^w(r) to Cr-> a) by construction, Arbitrary number of particles : WCR ;Ms T) ⁼ - PolT) ^V ⁺ NW· Lus+ wa(RijiMs , T) +we (RijkMt. We did not explicitly calculate anything ! Fast bookkeeping. => Eff(R) = E(EY) +W(R- "iMsiT) Heff ("iMsiT). = = Po(Ms ,T(V ⁺ No , (at)+(") ⁺ [¹ v (Rijims, T.... -j

Hence,
$$
12(N_1\mu_{51}V,T) = p_0(\mu_{51}T)V + Nw_1(\mu_{11}T) + A(N_1V,T; \mu_{5})
$$

\nwhere: $2^{-\beta H} = \frac{1}{N! \lambda^{2N}} \int dE^{N} e^{-\beta H \epsilon H (E^{M}T) \mu_{5}T}$
\nIntermite's
\n $2^{-\beta H} = \frac{1}{N! \lambda^{2N}} \int dE^{N} e^{-\beta H \epsilon H (E^{M}T) \mu_{5}T}$
\nIntermite's
\n $2^{-\beta H} = \frac{1}{N! \lambda^{2N}} \int dE^{N} e^{-\beta H \epsilon H (E^{M}T) \mu_{5}T}$
\n $2^{-\beta H} \rho = p_0(\mu_{5}T) + TT(p_1\mu_{5}T) \quad ; T = -(\frac{\partial A}{\partial V})_{N_1\mu_{5}T}$
\n $\frac{1}{N! \lambda^{2}} = \frac{1}{N! \lambda^{1} N! \lambda^{3}}$
\n $\frac{1}{N! \lambda^{3}} = \frac{1}{N! \lambda^{1} N! \lambda^{3}}$
\n $\frac{1}{N! \lambda^{2}} = \frac{1}{N! \lambda^{3} N! \lambda^{4} N! \lambda^{5}}$
\n $\frac{1}{N! \lambda^{4}} = \frac{1}{N! \lambda^{5}} \int dE^{M} \rho = 1$
\n $\frac{1}{N! \lambda^{5}} = \frac{1}{N! \lambda^{5}}$
\n $\frac{1}{N! \lambda^{5}}$
\n

